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P1. Prove Young’s inequality: Suppose that 1 ≤ p, q, r ≤ ∞ and 1
p + 1

q = 1 + 1
r . Let f ∈ Lp(R) and

g ∈ Lq(R). Then f ∗ g is defined a.e. and

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

Solution: If r = ∞, then p and q are conjugate and we obtain a pointwise bound on f ∗ g by
Hölder’s inequality:

|(f ∗ g)(x)| =
∣∣∣∣∫

R
f(x− y)g(y) dy

∣∣∣∣ ≤ ∫
R
|f(x− y)g(y)| dy ≤ ∥f̃∥p∥g∥q

where f̃(y) = f(x− y). But by translation-invariance and reflection-invariance of the Lebesgue
measure, ∥f̃∥p = ∥f∥p. Thus, ∥f ∗ g∥∞ ≤ supx∈R |(f ∗ g)(x)| ≤ ∥f∥p∥g∥q.
Assume r < ∞. Then 1

p + 1
q > 1, so p, q < ∞. If ∥f∥p = 0 or ∥g∥q = 0, then f ∗ g = 0 a.e., so

∥f ∗ g∥r = 0. Assume ∥f∥p > 0 and ∥g∥q > 0. Note that (cf) ∗ (dg) = cd(f ∗ g) for constants
c, d ∈ C. Using absolute homogeneity of the norms, we may therefore normalize the functions
and assume ∥f∥p = ∥g∥q = 1. Let s, t be such that 1

s = 1− 1
q and 1

t = 1− 1
p . Then for numbers

a, b ≥ 0,
ab = (apbq)1/r(ap)1/s(bq)1/t. (1)

Moreover, 1
r +

1
s +

1
t = 1, so we may apply the generalized Hölder inequality:

|(f ∗ g)(x)| =
∣∣∣∣∫

R
f(x− y)g(y) dy

∣∣∣∣
≤

∫
R
|f(x− y)||g(y)| dy

=

∫
R
(|f(x− y)|p|g(y)|q)1/r︸ ︷︷ ︸

h1(y)

(|f(x− y)|p)1/s︸ ︷︷ ︸
h2(y)

(|g(y)|q)1/t︸ ︷︷ ︸
h3(y)

dy

≤ ∥h1∥r∥h2∥s∥h3∥t

=

(∫
R
|f(x− y)|p|g(y)|q dy

)1/r


∫
R
|f(x− y)|p dy︸ ︷︷ ︸

∥f∥pp=1


1/s

∫
R
|g(y)|q dy︸ ︷︷ ︸
∥g∥qq=1


1/t

=

(∫
R
|f(x− y)|p|g(y)|q dy

)1/r

.

Therefore, by Tonelli’s theorem,

∥f ∗ g∥rr =
∫
R
|(f ∗ g)(x)|r dx ≤

∫
R

∫
R
|f(x− y)|p|g(y)|q dy dx = ∥f∥pp∥g∥qq = 1.

P2. Let f : R → R be a Lebesgue-measurable function with

f(x+ y) = f(x) + f(y), ∀x, y ∈ R.

(a) Using Lusin’s and Steinhaus’ Theorems, prove that f is continuous at x = 0.



Solution: By Lusin’s theorem, for each ϵ > 0 there is a closed set E ⊆ X such that
µ(Ec) < ϵ and f |E is continuous. Take R > 0 big enough such that Ẽ = E ∩ [−R,R] has
positive measure. By Steinhaus theorem, there is ξ > 0 such that (−ξ, ξ) ⊆ Ẽ− Ẽ. Notice
that f |Ẽ is uniformly continuous. So, for each η > 0 there is δ > 0 such that if |x− y| < δ
for x, y ∈ E ∩ [−R,R] then |f(x)− f(y)| < η.

For z ∈ R with |z| < min(δ, ξ), there are x, y ∈ E ∩ [−R,R] such that z = x − y. By
hypothesis, we have f(z) = f(x)−f(y). As |z| = |x−y| < δ then |f(z)| = |f(x)−f(y)| < η,
so we conclude that f is continuous at 0.

(b) Conclude that f(x) = xf(1) for each x ∈ R.

We notice that f is continuous everywhere. Indeed, for x ∈ R and (xn)n∈N, we have that
x− xn → 0 as n → ∞. So, by continuity at 0:

f(x)− f(xn) = f(x− xn) → f(0) = 0 as n → ∞.

On the other hand, by an standard induction argument on Z and then on Q, we have that
for each x ∈ Q,

f(x) = xf(1).

That being so, the conclusion follows by continuity.

P3. Let (X, τ) be a locally compact Hausdorff space. Let µ be a Radon measure. We will show for
each function f ∈ L1(µ) and ϵ > 0, there exists some functions g, h : X → R such that g is upper
semicontinuous and bounded above h is lower semicontinuous and bounded below

g ≤ f ≤ h, and

∫
X
(h− g)dµ < ϵ.

For this:

(a) Justify that one can assume without loss of generality that f is positive.

Solution: We know that f can be written as f = f+ − f− with f+, f− ∈ L1(µ) positive
functions. If the statement is true for positive functions, then there are g−, g+ upper
semicontinuous functions bounded by above and h−, h+ lower semicontinuous functions
bounded by below. Thus

g+ − h− ≤ f+ − f− ≤ h+ − g−,

where −h− is upper semicontinuous bounded by above and −g− is lower semicontinuous
bounded by below. Thus, the result follows for f .

From now on, we assume that f ≥ 0.

(b) Show that there are measurable sets (En)n∈N and constants (cn)n∈N ⊆ R+ such that f =∑∞
n=1 cn1En .

Solution: We know that there is a non decreasing sequence of positive simple functions
(fn)n∈N such that fn ↗ f . We define tn = fn − fn−1 ≥ 0 with f0 = 0. Then, we have that

N∑
n=1

tn = fN ↗ f.
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Thus f =
∑

n∈N tn. As (tn)n∈N are positive simple functions, we conclude the statement.

(c) Find appropriate compact sets (Kn)n∈N and open sets (Un)n∈N to define g =
∑N

n=1 cn1Kn

for some carefully chosen N ∈ N and h =
∑

n∈N cn1Un . Conclude.

Solution: For each n ∈ N, by regularity of µ we find a compact set Kn and an open set
Un such that Kn ⊆ En ⊆ Un and

cnµ(Un \Kn) < 2−(n+1)ϵ. (2)

We notice that 1Un is lower semicontinuous for each n, and likewise 1Kn is upper semicon-
tinuous for each n. This suggests to define h =

∑∞
n=1 cn1Un which is bounded by below.

Nevertheless, the if we define and g =
∑∞

n=1 cn1Kn this function is not necessarily bounded
by above. So, we take N ∈ N such that

∞∑
n=N+1

cnµ(Un) <
ϵ

2

and set g =
∑N

n=1 cn1Kn . Observe that this is possible due to the fact that the series∑∞
n=1 cnµ(Un) converge by equation (2) and the fact that f ∈ L1(µ).

Thus, we get g ≤ f ≤ h. On the other hand, notice that by monotone convergence theorem∫
h− gdµ =

∞∑
n=1

cnµ(Kn)−
N∑

n=1

cnµ(Un) =

∞∑
n=1

cnµ(Kn \ Un) +

∞∑
n=N+1

cnµ(Un) <
ϵ

2
+

ϵ

2
,

concluding.
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